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Abstract
Large Language Models (LLMs) have demonstrated impressive per-

formance across a wide range of NLP tasks, including summariza-

tion. LLMs inherently produce abstractive summaries by paraphras-

ing the original text, while the generation of extractive summaries

– selecting specific subsets from the original text – remains largely

unexplored. LLMs have a limited context window size, restricting

the amount of data that can be processed at once. We tackle this

challenge by introducing LaMSUM, a novel multi-level framework

designed to generate extractive summaries from large collections of
user-generated text using LLMs. LaMSUM integrates summarization

with different voting methods to achieve robust summaries. Exten-

sive evaluation using four popular LLMs (Llama 3, Mixtral, Gemini,

GPT-4o) demonstrates that LaMSUM outperforms state-of-the-art

extractive summarization methods. Overall, this work represents

one of the first attempts to achieve extractive summarization by

leveraging the power of LLMs, and is likely to spark further interest

within the research community.

1 Introduction
“Brevity is the soul of wit.”

— William Shakespeare, Hamlet, Act 2, Scene 2

Social media platforms like Facebook, X (formerly Twitter), and

Reddit offer a medium for individuals to express their opinions and

views on various subjects, leading to a diverse array of perspectives

shared through social debates, critiques, and reviews [5, 11, 13, 75,

78]. With a vast amount of data being generated by users online,

there is a growing need for summarization algorithms providing a

precise and concise summary, eliminating the need for users to sift

through numerous posts or reviews. Based on the resulting sum-

mary, summarization algorithms can be categorized as ‘extractive’

and ‘abstractive’. In extractive summarization, the aim is to select

a subset representative of the original text [41, 66, 71, 72, 80]. In

contrast, abstractive summarization aims to generate natural lan-

guage summaries that capture the essence of the original text, often

paraphrasing the content rather than directly extracting it [39, 76].

Extractive summarization is a crucial task with a rich body of

literature, widely applied in summarizing legal cases, news arti-

cles, lectures, clinical notes, and social media content [3, 29, 35, 47].

For example, a Google search for a topic or hashtag displays a

few tweets alongside the usual lists of websites and news articles.

The selection of tweets displayed in search results is similar to an

extractive summarization task, where only a subset of tweets is

selected [24]. Additionally, the Library of Congress only stores a

selection of tweets as part of its archive to optimize storage space

[12]. E-commerce platforms like Amazon display only a subset of

reviews in the condensed view, such that the chosen reviews are

representative of all the reviews submitted by the users. Such cases

are instances of extractive summarization, where the target is to se-

lect the most relevant subset that can effectively summarize a topic

or a product. When summarizing user generated data, it is crucial

to quote the user’s exact words, making extractive summarization

particularly valuable in such cases. In the process of summarization,

each post or review is treated as a basic unit – often referred to as

a textual unit.
In recent years, Large Language Models (LLMs) have exhibited

high performance across various tasks, including summarization [7,

32, 51, 60]. Summaries generated by LLMs showcase high coherence

and are overwhelmingly preferred by the human evaluators [42,

52]. However, using LLMs for extractive summarization has two

significant limitations: (i) as generative models, LLMs naturally

tend to perform abstractive summarization by paraphrasing rather

than selecting the most relevant sentences; and (ii) due to the finite

size of the context window, LLMs cannot handle long texts in a

single input, underscoring the need for a method that allows for

processing long text. Given the increasing reliance on LLMs for

summarization, it is worth investigating the utility of LLMs for

extractive summarization of large volumes of user-generated text.

To address these limitations, we present a novel framework

LaMSUM (Large Language Model based Extractive SUMmarization)

that integrates LLM-generated summaries with voting algorithms

borrowed from Social Choice Theory [4]. Voting algorithms are

traditionally employed in decision making processes to aggregate

preferences and opinions of a large population; the prime example

being the electoral system, where voters’ preferences for candi-

dates are gathered to elect a winner that best represents the voters’
preferences. Voting systems can be categorized into single-winner
and multi-winner types, depending on the number of winners. In

a single-winner system, only one candidate is elected, whereas a

multi-winner system allows for the selection of multiple candidates.

Extractive summarization can be viewed as a multi-winner elec-

tion, where the input units act as candidates, and the units chosen

for the summary are considered as the winners. A multi-winner

ar
X

iv
:2

40
6.

15
80

9v
2 

 [
cs

.C
L

] 
 2

2 
A

ug
 2

02
4



Anonymous Authors

What is extractive summarization ?

Extractive summarization is used to automatically summarize 
a large piece of text by selecting the most important 
sentences or phrases and combining them into a concise 
summary. In extractive summarization, the algorithm 
identifies the most relevant and informative sentences in the 
original text and extracts them to create a summary ….

Perform extractive summarization on the following 50 
sentences and output 5 sentences.   
1. Is there something you eat every day?  I'm not sure, 
But I find myself taking Claritin pretty much everyday.
2. I got hives all up and down my arm I took two 
Claritin but I feel horrible and this one itch the most
           .
           .

Here is an extractive summary of the 50 sentences in 5 
sentences:
I take Claritin every day to alleviate my allergies, but sometimes 
it doesn't work as well as I need it to. When my allergies act up, I 
take Claritin, but I've had experiences where it doesn't provide 
complete relief, leaving me feeling horrible ....

Figure 1: Current LLMs, by default, produce abstractive sum-
maries. Llama3-70b-8192, despite specifically prompted for
extractive summarization, generates abstractive summaries.
This behavior underscores the need for a targeted approach
to enable LLMs to effectively generate extractive summaries.

voting system includes approval-based committee (ABC) voting,

where voters approve a subset of candidates without ranking, and

ranked choice voting, where voters rank candidates by preference.

In LaMSUM, we utilize two approval based voting algorithms – Plu-

rality Voting [46] and Proportional Voting [37], and one ranked

based voting algorithm – Borda Count [19]. Our judicial application

of voting algorithms with a multi-level summarization framework

ensures that LaMSUM outperforms the state-of-the-art fine-tuned

summarization models. In summary, in this work, we make the

following contributions:

• We propose a novel framework LaMSUM which can effec-

tively summarize large (having >30K tokens) collection of

user generated content.

• LaMSUM considers a multi-level summarization model that

utilizes voting algorithms to combine outputs to generate

robust summaries.

• Analyse whether an ensemble model with multiple LLMs

in LaMSUM can lead to improved outcomes across different

voting methods.

To our knowledge, this is the first work to implement extrac-

tive summarization of large user-generated texts using LLMs by

combining summarization with voting algorithms. We believe this

work can spawn further research in this direction.

2 Background and Related Work
In this section, we review the relevant prior works that provide the

foundation for our current research.

Text Summarization Algorithms
With the growing volume of online data, the demand for algorithms

that automatically shorten and summarize texts is increasing. Au-

tomatic summarization can be approached in two ways: extractive

and abstractive. In extractive summarization, a subset of input col-

lection is selected for the summary based on their perceived quality

and significance, aiming to represent a larger dataset with a concise

sample. Abstractive summarization, on the other hand, generates

natural language summaries that capture the most critical infor-

mation from the original text. Both approaches seek to provide

readers with a concise overview of the textual content. Over the

years, many text summarization algorithms have been proposed in

the literature; the reader can refer to [18, 25] for detailed surveys.

Extractive Summarization of User Generated Content
A large body of prior research has focused on summarizing long

documents [1, 8, 16]. In fact, traditionally, summarization tasks

have focused on summarizing a single document, such as a news

article or a business report. In recent years, summarization has been

increasingly applied on different types of user generated text (e.g.,
tweets, Facebook or Reddit posts) [28, 31, 44], where the task is to

summarize short, independent posts written by many users. Several

extractive summarization algorithms tailored specifically for user

generated content have also been proposed [14, 33, 48, 55, 57, 67].

Large Language Models (LLMs) for Summarization
LLMs are now being extensively used for summarization [7, 32, 60].

Multiple works have proposed few-shot learning frameworks for

the abstractive summarization of news, documents, webpages, and

generic texts [5, 38, 61, 69, 73], but their primary focus remains

on short documents that can fit in the LLM context window. Re-

searchers have also observed that human evaluators are increas-

ingly preferring LLM-generated summaries compared to other base-

lines [23, 42, 65, 74, 77]. Despite the advancements, recent studies

have also uncovered factual inaccuracies and inconsistencies in

LLM-generated summaries [36, 43, 58, 59].

Extractive Summarization through LLMs: The Current State
By default, LLMs produce abstractive summaries, meaning that

the summary text is distinct from the input text, even when it is

instructed to do otherwise. To illustrate this, we present a small

example in Figure 1. An LLM, when prompted, could clearly explain

extractive summarization, yet, when we instructed it to perform

extractive summarization on a set of 100 sentences, it fails to do so

and instead generated an abstractive summary. Prior to our current

work, only two studies attempted to perform similar tasks. Zhang

et al. [73] attempted summarization of short news articles using

GPT 3.5, while Chang et al. [9] attempted abstractive summarization

for book-length documents. However, both these approaches suffer

from practical limitations such as lack of contextual dependencies

in user generated text and the problem with positional bias in LLMs.

To the best of our knowledge, ours is the first attempt to perform

extractive summarization on a large collection of user generated

texts through LLMs, while tackling the challenge of positional bias.

We describe our proposal in detail in the next section.

3 Generating Extractive Summaries through
LLMs

In this section, we define the problem statement formally and intro-

duce our novel summarization framework LaMSUM (Large Language
Model based Extractive SUMmarization) that leverages LLMs to

summarize large user-generated text.
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Figure 2: LaMSUM: Multi-level framework for extractive summarization of large user-generated text. Input set T (level 0) is
divided into ⌈ | T |𝑠 ⌉ chunks each of size s. From each chunk a summary is produced of size 𝑞 (refer Figure 3), 𝑞 length summaries
from ⌈ | T |𝑠 ⌉ chunks are merged to form the input for the next level i.e., level 1. Iteratively the same procedure is repeated till we
obtain a summary of size 𝑘 . We set 𝑞 = 𝑘 to ensure our algorithm can effectively handle the worst-case scenario where all the
textual units in the final summary may come from the same input chunk (Section 3.2).

.

3.1 Task Formulation
Let T = {𝑡1, 𝑡2, . . . 𝑡𝑁 } represent a collection of textual units, where

each unit can be a tweet, a post, or a review. Our summarization

algorithm takes T and an integer 𝑘 as input, where T denotes the

entire set of textual units and 𝑘 specifies the desired number of

units in the summary. Task is to output a summary S ⊆ T such

that |S| = 𝑘 . The summary S would be evaluated based on its

alignment with the preferences of gold standard summarizers. If

the context window size of an LLM is𝑊 , we assume T is too large

to fit in a single context window.

3.2 Multi-Level Summarization
LLMs have a limited context window, making it impossible to input

large text collections all at once. While recent models like GPT-4

support context windows of up to 128k tokens, they still cannot

accommodate book-length inputs within a single window. Conse-

quently, the input must be divided into smaller chunks to perform

the desired task [9]. Thus, LaMSUM employs a multi-level framework

for extractive summarization, enabling it to consider input data of

any size (detailed in Figure 2)
1
.

The set T , which contains the original textual units, is provided

as input at level 0 and is divided into ⌈ | T |𝑠 ⌉ number of chunks of

size 𝑠 . From each chunk of size 𝑠 , we generate a summary (discussed

in Section 3.3) of size 𝑞 (where 𝑞 < 𝑠), and repeat this process for

1
Code is available at https://anonymous.4open.science/r/LaMSUM/

all ⌈ | T |𝑠 ⌉ chunks.
2
We then merge all these 𝑞 length summaries

obtained from level 0 to form an input for the next level i.e., level

1. We repeatedly perform this process until we obtain the final

summary of length 𝑘 . Note that the last chunk maybe less than 𝑞

in size, in such case we move all the textual units of the respective

chunk to the next level (refer Algorithm 1).

An alternate strategy would be to divide the input T into
| T |
𝑠

chunks each of size 𝑠 and from each chunk select
𝑘 ·𝑠
| T | sentences

to be included in the summary. However, this approach assumes a

uniform distribution of potential candidates across chunks that can

be included in the final summary. In LaMSUM, we keep 𝑞 = 𝑘 i.e., we

extract 𝑘 textual units from each chunk eliminating the chance of

missing any potential candidate (discussed in Section 4.4). In the

worst-case scenario, all 𝑘 units in the final summary can come from

a single chunk, and our algorithm can handle such cases effectively.

It is important to note that we are dealing with user-generated

content, such as tweets, which lack contextual connections. Unlike

book summarization, where chapters are interconnected and the

context of previous chapters is crucial for summarizing the current

one, tweets are generally standalone and contextually independent.

Thus, our approach of independently deriving summaries from

each chunk works well in our setup, as each textual unit operates

independently of the others and there are no long-range dependen-

cies.

2
Note that a chunk of size 𝑠 refers to a chunk containing 𝑠 textual units. Likewise, a

summary of size 𝑞 indicates a summary of 𝑞 textual units. | T | denotes the number of

textual units present in T .

https://anonymous.4open.science/r/LaMSUM/
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Variation 1 Variation 2 Variation 3 Variation m

Shuffle Sentences

Input Chunk

Output 
Summary 1

Output 
Summary 2

Output
Summary  3

Output 
Summary m

Voting Algorithm to form the Final Summary

𝑠

𝑞

Figure 3: Textual units (e.g., posts) in the input chunk are
shuffled to account for the positional bias.𝑚 different chunk
variations are obtained through shuffling, which are sub-
sequently summarized using LLMs.𝑚 summaries are then
aggregated by voting algorithms to get the final summary.

3.3 Summarizing a Chunk
Next, we discuss how LaMSUM summarizes a chunk (Algorithm

2) by tackling the positional bias in LLMs and leveraging voting

algorithms drawn from Social Choice Theory [4].

3.3.1 Tackling Positional Bias. Prior research [6, 34, 65, 73] has

highlighted that summarization using LLM is prone to positional

bias, i.e., the sentences located in certain positions, such as the be-

ginning of articles, are more likely to be considered in the summary.

To address this issue and generate a robust summary, we create𝑚

different variations by shuffling the textual units within the input

chunk. This ensures that each unit has the opportunity to appear

in different positions within the input text (refer Figure 3).

3.3.2 Zero-shot prompting. For each input chunk, we obtain 𝑚

different summaries (one for each variation) by prompting the LLM.

We employ the following two prompts to obtain the summaries –

a Select the most suitable units that summarize the input text.

Prompt: "Input consists of <chunk_size> sentences. Each sentence is
present in a new line. Each sentence contains a sentence number fol-
lowed by text. You are an assistant that selects best <summary_length>
sentences (subset) which summarizes the input. Think step by step
and follow the instructions. <sentences>"
b Generate a ranked list in descending order of preference.

Prompt: "Input consists of <chunk_size> sentences. Each sentence is
present in a new line. Each sentence contains a sentence number
followed by text. You are an assistant that outputs the sentences in
the decreasing order of their relevance to be included in the summary.
Think step by step and follow the instructions. <sentences> Remember
that output should contain all the sentences in the decreasing order of
their preference."

3.3.3 Output Calibration. LLMs may alter certain words from the

input text while generating extractive summaries, as shown in

Table 1. Thus, we perform additional checks to ensure that the

Algorithm 1 Algorithm for multi-level summarization

Input: T , 𝑘, 𝑠, 𝑞,𝑚
S = {} ⊲ S stores the final summary

while |S| < 𝑘 do ⊲ until 𝑘 length summary is obtained

𝑛𝑐ℎ𝑢𝑛𝑘𝑠 = ⌈
| T |
𝑠 ⌉ ⊲ number of chunks in set T

𝐿 = {} ⊲ 𝐿 stores the results of a given level

for 𝑖 ← 1 to 𝑛𝑐ℎ𝑢𝑛𝑘𝑠 do
𝑠𝑖 = (𝑖 − 1) ∗ 𝑠 ⊲ starting index of chunk

𝑒𝑖 = 𝑖 ∗ 𝑠 ⊲ ending index of the chunk

if 𝑖 = 𝑛𝑐ℎ𝑢𝑛𝑘𝑠 then ⊲ if last chunk

𝑒𝑖 = |T | ⊲ ending index is equal to length of T
end if
𝑤𝑖𝑑𝑡ℎ = 𝑒𝑖 − 𝑠𝑖 ⊲ number of textual units in a chunk

if 𝑤𝑖𝑑𝑡ℎ <= 𝑞 then ⊲ if last chunk

𝐿 = 𝐿 ∪ 𝑡𝑠𝑖 ∪ 𝑡𝑠𝑖+1 ∪ ... ∪ 𝑡𝑒𝑖−1
⊲ add all textual units to the result

else
𝐿 = 𝐿 ∪ ChunkResult(T , 𝑠𝑖, 𝑒𝑖, 𝑞,𝑚)

⊲ add summary of each chunk to result 𝐿

end if
end for
T = 𝐿 ⊲ update the input T for the next level

S = S ∪ 𝐿
end while
Output: S

Algorithm 2 Algorithm for summarization of a chunk

function ChunkResult(T , 𝑠𝑖, 𝑒𝑖, 𝑞,𝑚)

𝑋 = {}
for 𝑖 ← 1 to𝑚 do ⊲ for each variation of a chunk

𝑉 = Shuffle(T , 𝑠𝑖, 𝑒𝑖, 𝑖) ⊲ shuffle with random state 𝑖

𝑅 = LLM(𝑉 ,𝑞) ⊲ obtain summary from the LLM

𝐶 = Check(𝑅,T , 𝑠𝑖, 𝑒𝑖) ⊲ output calibration

𝑋 .𝑎𝑑𝑑 (𝐶)
end for
return VOTING(𝑋,𝑞) ⊲ voting to obtain the final summary

end function

textual units selected in the summary are indeed a subset of T . If
the post selected by the LLM (say 𝑥) is not present in the original

text T , we identify the post with the closest resemblance to 𝑥

by computing the edit distance [54]. LLMs may also hallucinate,

generating new sentences rather than selecting units from the input.

In such instances, the edit distance between the generated unit 𝑥

and all the original textual units would be high. We discard these

sentences from the output.

3.4 Reimagining Summarization as an Election
As mentioned earlier, for a given chunk, we obtain𝑚 summaries

– one for each variation.We imagine the process of creating the fi-
nal summary from these𝑚 summaries to be a multi-winner election,
where the textual units in𝑚 summaries correspond to ballots (can-

didates) and the role of the voting algorithm is to pick 𝑞 winners.
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Original Post LLM Modified Output
My allergies be acting up &amp; Claritin be letting them &gt;,&lt; My allergies be acting up & Claritin be letting them.

I spent the extra money to have fast relief, but instead I am

SUFFERING #gimmemymoneyback

I spent the extra money to have fast relief, but instead I am SUFFER

Table 1: Examples illustrating that LLMs when selecting textual units for summarization, often demonstrate a propensity to
alter certain words or introduce new ones.

We employ three different voting methods, namely Plurality Vot-
ing [46], Proportional Approval Voting (PAV) [37] and Ranked
Choice Voting [19] to determine the final summary. Due to the

varying input requirements of different voting methods, changing

both the prompting approach and the output generated by the LLM

becomes imperative.

Plurality voting and proportional voting are approval-based vot-

ing methods where voters can select multiple candidates they ap-

prove of without indicating a specific preference order. In multi-

winner plurality voting (also known as block voting), each voter

casts multiple votes and the candidates are selected based on the

number of votes polled. In the context of summarization, a textual
unit is treated as a candidate, and the LLM acts as the voter. We select

the textual units in the decreasing order of the votes polled, till we

obtain a summary of size 𝑞. PAV evaluates the satisfaction of each

voter in the election outcome. A voter’s satisfaction is measured

based on – amongst the number of candidates they voted for, how

many are selected in the election. In the realm of summarization,

PAV selects the textual units based on the amount of support each

unit receives in𝑚 summaries. Since both plurality and proportional

are approval-based voting algorithms, the units are either approved

or disapproved by the underlying LLM, with no explicit ranking or

preference order. In this case, we prompt the LLM to select the best
<𝑞> sentences that summarize the input text as shown in Section

3.3.2 a .

On the other hand, ranked choice voting entails assigning a

score to each textual unit and subsequently selecting the highest-

scoring units for inclusion in the summary. For ranked voting, we

use the Borda count, a positional voting algorithm [19]. In the

Borda method, each candidate is assigned points corresponding to

the number of candidates ranked below them: the lowest-ranked

candidate receives 0 points, the next lowest gets 1 point, and so

forth. The candidates with the highest aggregate points are declared

as the winners. In ranked voting, we prompt the LLM to output
sentences in descending order of their suitability for the summary as

discussed in Section 3.3.2 b .

It is important to note that the prompting technique and the

output generated by LLM vary for different voting methods. In

approval voting the output from LLM is a list of 𝑞 textual units that

LLM finds best suited to be included in the summary. Whereas in

ranked choice voting, the output from LLM is a list of the same

length as input i.e. 𝑠 with all the units sorted in decreasing order

of their preference towards the summary, and Borda Count [19]

is used to identify the top 𝑞 textual units. In the next section, we

highlight how the voting-based summarization schemes outperform

the Vanilla setup, which does not use voting.

Parameters Claritin US-Election MeToo
#TextualUnits (|T |) 3998 2107 483

#InputWords 53609 35522 16737

AV

#CTU (𝑠) 200 150 75

#CSTU (𝑞) 100 100 50

RV

#CTU (𝑠) 40 40 40

#CSTU (𝑞) 20 20 20

#SummaryTU (𝑘) 100 100 50

Table 2: Input parameters used for the proposed framework
LaMSUM. #TextualUnits is the number of textual units in the in-
put set i.e. |T |. #InputWords represents the number of words
present in the input set T . #CTU is the number of textual
units in a chunk i.e. chunk size represented as 𝑠. #CSTU is the
number of textual units in the chunk summary represented
as 𝑞. #SummaryTU is the number of textual units present
in the final summary i.e. 𝑘 . AV and RV represents Approval
Voting and Ranked Voting respectively.

4 Experimental Setup
4.1 Dataset
Our experiments are conducted on three publicly available datasets,

consisting of crowd-sourced data from X, listed in Table 2 [13]. The

Claritin dataset contains 3,998 tweets about the benefits and the

side-effects of the anti-allergic drug Claritin. US-Election dataset

contains 2,107 tweets from 2016 US Presidential Election where

people support and attack different political parties. Me-Too dataset
includes 483 tweets from the October 2018MeToomovement, where

individuals recount the harassment cases they experienced.
3
During

pre-processing, we remove all web links and duplicate entries from

the datasets. The datasets also include gold-standard summaries

(reference summaries) which are human-generated i.e., the textual

units that are strong candidates for inclusion in the summary are

selected by the humans. Claritin and US-Election dataset, each have

three gold standard summaries, comprising 100 textual units each.

Me-Too dataset has two gold-standard summaries with 50 textual

units each.

4.2 Large Language Models (LLMs)
LLMs are characterized by their extensive parameter sizes and re-

markable learning abilities [10, 79]. In our work, we utilize three

open-source LLMs and one proprietary LLM to conduct experi-

ments: llama3-70b-8192 from Meta [62], mixtral-8x7b-32768
from Mistral AI [30], gemini-1.0-pro from Google [22] and

gpt-4o-mini-2024-07-18 from OpenAI [50]. Across all experi-

ments, we keep temperature, top probability and output tokens as

0, 0.8 and 8192 respectively.

3
Dataset: https://github.com/ad93/FairSumm/tree/master/Dataset

https://github.com/ad93/FairSumm/tree/master/Dataset
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4.3 Evaluation Metric
For evaluating the quality of summaries generated by LaMSUM, we
report ROUGE-1, ROUGE-2, and ROUGE-Lsum scores [40]. ROUGE-

1, ROUGE-2 and ROUGE-L respectively evaluate the overlap of

unigrams, bigrams and longest common subsequence between the

generated summary and the reference summary. ROUGE-Lsum is

more suitable for extractive summarization, as it applies ROUGE-L

at sentence level and then aggregates all the results to obtain the

final score.

4.4 LaMSUM Input Parameters
Input parameters for LaMSUM (Algorithm 1), such as |T | (total num-

ber of textual units in the set), 𝑠 (chunk size) and 𝑘 (length of

summary) are listed in Table 2 for different voting algorithms and

datasets. The value of𝑚 (number of shuffling) for all the datasets

was set to 5.

If𝑞 ∈ [𝑘, 𝑠), our proposedmethod can handle worst case scenario

where all the textual units in the final summary may originate from

a single chunk of level 0. As 𝑞 approaches 𝑠 , more levels are required

to converge to the final summary. The optimal value of 𝑞 that can

handle worst case and also reduce the number of levels in multi-

level summarization is 𝑘 , thus we keep 𝑞 = 𝑘 for experiments with

approval voting. For instance, if 𝑠 is 200 and 𝑞 is 100, this indicates

that only 50% of the units from each chunk advance to the next

level.

In ranked voting algorithm, we maintain smaller value for chunk

size (𝑠) to ensure that the LLMs output, which is of size 𝑠 , fits within

the context window. Additionally, as chunk size increases, LLM

often does not output all the sentences, instead produce general-

ized statements like “similarly for other sentences we find the rank”.
Therefore, it is essential to keep the chunk size smaller. For ranked

voting, we set 𝑠 and 𝑞 to 40 and 20 respectively, upholding the

selection ratio of 50% at each level.

5 Experimental Evaluation
In this section, we present the empirical comparison of LaMSUMwith
competent baseline models and voting algorithms across datasets

(refer Table 3).

5.1 Baseline Comparison
We compare LaMSUM with the pre-neural models (ClusterRank [21],

DSDR [26], LexRank [20], SummBasic [49]), transformer based

models (GPT2 [53], BERT [45], XLNET [70]) and with fine-tuned

BERTSUM [41] model. As presented in Table 3 it is observed that

LaMSUM outperform the state-of-the-art summarization models. Ear-

lier work [73] reported that the ChatGPT model achieves lower

ROUGE scores on CNN/DM and XSum dataset. But our results

demonstrate that our proposed framework LaMSUM performs signif-

icantly better than other fine-tuned models for large user-generated

text.

Results from the LLM exhibit variability when executed multiple

times over the same input. We conducted experiments with LLMs

for five iterations for the same input. Table 3 contains the maximum

ROUGE score obtained from these five iterations and Table 6 (in

supplementary material) displays the variance in the ROUGE scores

when executed for five times.

Algorithm 3 Algorithm for summarization of a chunk in Vanilla

LLM

function ChunkResult(T , 𝑠𝑖, 𝑒𝑖, 𝑞,𝑚)

𝑅 = LLM(T , 𝑠𝑖, 𝑒𝑖, 𝑞) ⊲ 𝑞 textual units from T ∈ [𝑠𝑖, 𝑒𝑖]
𝐶 = Check(𝑅,T , 𝑠𝑖, 𝑒𝑖) ⊲ output calibration

return 𝐶

end function

5.2 Vanilla LLM vs. LaMSUM
Our proposed framework, LaMSUM, ensures robust summary gen-

eration by shuffling and employing a voting algorithm to select

the best textual units for the summary. It is crucial to compare

LaMSUM with a multi-level LLM that does not use shuffling and vot-

ing, which we call Vanilla LLM. Algorithm 3 outlines the steps used

by vanilla LLM to find the chunk summary. Table 3 demonstrates

that the vanilla multi-level LLM has lower ROUGE scores for each

LLM compared to the proposed framework LaMSUM, indicating that

shuffling and voting enhances the performance.

5.3 Which Voting Algorithm Holds the Lead?
We experimented with three voting algorithms, two approval-based

and one ranked-based. Experimental results indicate that LLMs

with approval voting perform the best compared to the ranked

voting algorithm. We hypothesized that rank-based voting would

yield better results, as it makes more informed decisions about the

potential sentences to be included in the summary. Contrary to

our expectations, rank-based algorithms performed even worse

than neural and transformer-based models. This can be attributed

to multiple factors: (i) LLMs hallucinate and output sentences in

the same or in the reverse order as they were in the input. (ii)

Occasionally, LLMs do not output all the sentences from the input,

resulting in the padding of left-out sentences towards the end of the

list, which disturbs the ranking and potentially affects the result. To

overcome these problems, we kept the chunk size low as discussed

in Section 4.4, but the results still did not surpass those of the

approval-based voting algorithm.

Takeaway: LLMs, when prompted to select sentences that can sum-
marize the input, perform better than when tasked to rank the
sentences in the order of their preference towards the summary.

5.4 What Fails to Deliver Results?
To ensure extractive summarization, we tested an additional ap-

proach – each sentence is tagged with a sentence number, LLM is

prompted to select the best 𝑞 sentences and output only the sentence
numbers of the best 𝑞 sentences. Thereafter, the sentences corre-

sponding to the sentence numbers can be retrieved. For instance, if

𝑠 is 200 and 𝑞 is 100, the task is to output the sentence numbers of

the best 100 sentences from a pool of 200 sentences. In such cases,

LLMs hallucinate and provide an output consisting of either all the

odd number sentences or all the even number sentences.

Takeaway: For extractive summarization, relying solely on in-

dexes may result in hallucination, underscoring the importance of

emitting the input content and not the numbers.
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Models Claritin US-Election MeToo
R1 R2 RLSum R1 R2 RLSum R1 R2 RLSum

ClusterRank 50.08 14.17 48.64 55.18 13.09 53.51 55.81 55.81 52.48

DSDR 28.01 8.40 27.45 48.04 9.53 46.44 55.03 17.30 52.04

LexRank 45.04 19.71 44.74 42.63 10.78 41.64 42.70 11.32 40.91

SummBasic 58.25 19.29 56.76 55.36 12.43 53.94 58.23 21.53 56.07

GPT2 61.61 23.58 60.74 55.86 15.07 54.81 40.63 11.24 38.86

BERT 57.30 22.37 56.21 55.89 15.44 55.00 45.72 10.76 43.50

XLNET 55.52 21.37 54.75 56.48 15.72 55.41 36.58 08.50 34.48

BERTSUM [41] 57.87 22.75 55.96 59.00 17.51 57.41 57.11 23.08 54.84

Vanilla

Llama3 58.07 21.86 56.73 56.12 12.93 54.71 51.84 17.84 49.47

Mixtral 57.80 20.14 55.81 57.11 14.20 55.79 49.63 11.29 46.16

Gemini 49.70 18.33 48.78 51.00 12.36 49.19 45.51 8.95 42.51

GPT-4o mini 62.93 24.82 61.08 55.06 15.01 53.88 36.30 7.05 34.54

Plurality

Voting

Llama3 61.28 23.79 59.54 60.11 18.26 58.99 55.51 18.79 52.85

Mixtral 59.13 22.90 57.40 59.55 16.01 58.12 55.41 17.62 52.63

Gemini 55.43 19.32 53.35 58.83 16.25 57.54 57.95 21.47 54.87

GPT-4o mini 64.20 26.71 62.66 58.15 15.91 56.78 54.55 19.66 51.9

Proportional

Voting

Llama3 61.31 23.36 59.73 58.90 15.99 57.55 58.14 14.99 55.46
Mixtral 60.30 24.03 58.58 58.46 15.74 57.28 57.36 22.97 54.82

Gemini 61.77 19.83 59.81 57.92 15.85 56.49 54.02 13.95 50.90

GPT-4o mini 64.13 26.75 62.30 58.68 19.08 57.62 48.55 13.23 45.35

Borda Count

Llama3 51.87 15.93 49.61 51.95 13.49 50.60 53.35 16.99 50.38

Mixtral 56.07 22.28 54.65 48.71 13.37 47.48 53.24 18.80 50.96

Gemini 51.45 16.92 49.39 54.01 13.38 52.56 50.13 21.45 47.96

GPT-4o mini 58.01 18.08 56.05 53.10 15.94 51.63 50.10 17.82 47.75

Table 3: Table showing metric scores from different models for various datasets. Here, R1 = ROUGE-1 Score, R2 = ROUGE-2
Score, RLSum = ROUGE-LSum Score. The best value per dataset is shown in bold and clearly Approval voting outperforms all
the other methods across all the evaluation measures.

Ensemble Voting Method R1 R2 RLSum

All 4 models

Plurality 54.16 20.79 53.00

Proportional 54.70 19.95 53.14

Ranked 51.78 16.97 50.24

Best 3 models

Plurality 58.88 21.74 57.60

Proportional 58.04 22.78 56.71

Ranked 57.22 19.51 55.33

Weak 3 models

Plurality 50.64 18.82 49.31

Proportional 52.92 19.23 51.07

Ranked 47.50 16.74 46.37

Table 4: Results obtained through ensembling of LLMs in
LaMSUM for Claritin dataset. We compare 3 different cases:
i) ensemble of all 4 models – Llama, Mixtral, Gemini and
GPT-4o mini ii). ensemble of best 3 models – Llama, Mixtral
and GPT-4o mini iii). ensemble of weak 3 models – Llama,
Mixtral and Gemini.

6 Ensembling of LLMs in LaMSUM
Different LLMs can be considered as distinct experts, each offering

their vote or opinion about the textual unit to be included in the

summary. In LaMSUM, each expert (LLM) operated independently,

determining which sentences were worthy of inclusion. We hy-

pothesize that using an ensemble of LLMs in LaMSUM, where these
experts collaborate and reach a consensus, has potential to improve

performance of the overall system [56, 63].

We apply ensembling at each chunk as shown in Figure 4. For

a given chunk 𝑖 containing 𝑠 textual units, the goal is to produce

a final summary of size 𝑞 by gathering opinions of all the experts.

Ensembling takes place in two stages. Stage 1 - For each chunk we

obtain 𝑞 length summary through different LLMs by using shuffling

and voting method as demonstrated in Section 3.3. Stage 2 - To

ensemble the 𝑞 length summaries from different LLMs, we again

leverage the voting methods. In stage 2 we make use of the same

voting method that was used in stage 1 to maintain consistency.

The summary generated from the ensembling process is treated as

the final summary for chunk 𝑖 and is carried forward to the next

level.

As shown in Table 3, for Claritin dataset, GPT-4o mini outper-

forms the other models, while Gemini delivers weaker results. We

evaluate three different scenarios based on the number of LLMs

used in the ensembling process: i) all four models – Llama, Mixtral,

Gemini and GPT-4o mini, ii) the top three models – Llama, Mixtral

and GPT-4o mini, iii) the three weaker models – Llama, Mixtral

and Gemini. Table 4 shows the results of ensembling in LaMSUM for

different scenarios and voting methods.

In the approval-based voting algorithm, using all four models

or just the top three models for ensembling doesn’t significantly

improve performance; the resulting performance after ensembling

remains close to that of the weakest model in each case. However,

ensembling with the ranked-based voting algorithm yielded inter-

esting results. When ranked voting is applied to individual LLMs,

it delivers the worst performance compared to other voting algo-

rithms, as shown in Table 3. When using ranked voting with all

four models in the ensembled LaMSUM, the performance is close

to that of the weakest model – Gemini (49.39) < Llama (49.61) <

Ensemble (50.24) < Mixtral (54.65) < GPT-4o mini (56.05). However,
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Figure 4: Ensembling applied at chunk using all the four
models. 𝑞 length summaries are obtained from each chunk
through different LLMs using the shufflingmethod discussed
in Section 3.3. All the summaries are ensembled through
voting algorithms to achieve the final summary of length 𝑞.
This final 𝑞 length summary is thereafter forwarded to the
next level.

when considering the ensembled LaMSUM with the top three mod-

els – Gemini (49.39) < Llama (49.61) < Mixtral (54.65) < Ensemble

(55.33) < GPT-4o mini(56.05), ensemble outperforms Mixtral, and

the ROUGE score increases from 50.24 to 55.33. While the ensem-

bled LaMSUM with the top three models does not surpass GPT-4o

mini, it does enhance the performance of the overall setup.

Takeaway: Ensemble of LLMs in LaMSUM yield good results with

rank-based voting method, and can help improve the performance

of the overall setup if we select models for ensembling that perform

well individually in LaMSUM. Including all models in the ensemble

could result in the weakest model becoming the bottleneck.

7 Does Fine-Tuning Help?
The performance of LLMs on specific downstream tasks, such as

extractive summarization, can be suboptimal when not explicitly

fine-tuned. LLMs tend to generate erroneous information while

sounding persuasive and assured [2, 68]. In Section 2, we high-

lighted instances where LLMs exhibit nonplussed responses by

generating abstractive summaries despite being prompted for ex-

tractive summarization. They also alter some words, so we per-

form output calibration in LaMSUM. To address these challenges,

we explore the efficacy of instruction fine-tuning through explicit

instructions [64] and compare it with LaMSUM.
We utilize the Claritin dataset for instruction fine-tuning as it

has the highest number of tweets among all the three datasets. It

is divided into training (60%), validation (10%), and test (30%) set.

The US-Election and MeToo datasets are retained as additional test

sets for evaluation. Instruction fine-tuning involves three key com-

ponents: i) Instruction: The prompts used for zero-shot prompting,

Dataset R1 R2 RLSum
Claritin 18.60 3.11 17.14

US-Election 26.55 14.81 25.05

MeToo 28.94 10.81 24.80

Table 5: Metric scores from fine-tuned llama3.1-8b for vari-
ous datasets.

as detailed in Section 3.3.2. ii) Input: Set of input text T to be sum-

marized. iii) Output: The reference summary comprises sentences

extracted from T .
We fine-tune an open-source LLM, llama3.1-8b fromMeta [17],

using a 15 GB Tesla T4 GPU. During the fine-tuning phase, we

set the learning rate, warmup ratio, and batch size to 2e-4, 0.0,

and 2, respectively. For this process, we employ PEFT (Parameter

Efficient Fine Tuning), which involves freezing the layers of the

pre-trained model and only fine-tuning the last few layers specific

to the downstream task. We follow the QLoRA [15] method in

PEFT training. QLoRA is an optimized variant of LoRA [27] that

reduces the precision of weight parameters to 4-bit. This reduction

in precision decreases the model size, which is advantageous in

scenarios with limited memory available for fine-tuning.

Table 5 shows the results of the fine-tuned llama3.1-8b model.

We observed that the outputs are robust and adhere closely to the

instructions provided. The generated summaries contain the exact

sentences extracted from the input text, but the performance of the

fine-tuned model is inferior compared to LaMSUM.
Takeaway: Fine-tuning an LLM with the appropriate instructions,

input, and output can facilitate extractive summarization. But fine-

tuning requires a substantial amount of data with gold-standard

summaries. With less data, the model may overfit, resulting in poor

performance, as shown in the Table 5. Additionally, a model fine-

tuned on one dataset may not perform well on another dataset. Our

proposed LaMSUM addresses these issues by being effective when

the input data is large enough to exceed a single context window

but small enough to be used for fine-tuning.

8 Concluding Discussion
This work marks an early attempt to achieve extractive summa-

rization of large user-generated text that exceeds a single context

window using zero-shot learning. The proposed multi-level frame-

work LaMSUM leverages approval based and ranked based voting al-

gorithms to generate robust summaries. Experiments conducted on

three distinct crowd-sourced datasets demonstrated the efficacy of

LaMSUM, as it outperformed the results achieved by state-of-the-art

fine-tuned models. Ensembling of LLMs in our proposed framework

can enhance the performance of weaker models.

Note that there can be a concern regarding the potential data

leakage, as the experiments involve newer LLMs that may have

been exposed to the experimented datasets during their pre-training

phase. In Section 5.2 we showcased that the vanilla LLM, which

also includes LLM underperformed, whereas our proposed frame-

work which generates robust summaries yielded good results. This

highlights the efficacy of our model, even when it is exposed to

data leakage.
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Limitation
Our proposed framework, LaMSUM, very well handles text of any

length, conditioned on the fact that the final summary fits within

a single context window. Some modifications to LaMSUM may be

necessary when the output summary exceeds the size of a single

context window. We focused only on the user-generated text where

each textual unit is independent of the others; future research could

extend the framework to summarization tasks involving contextual

dependency such as book summarization.

Ethical Considerations
Our research focuses on using LLMs to produce extractive sum-

maries for user-generated text. Given the recent rise of LLMs and

the growing interest in applying them across different research

fields, we believe this research direction can help unveil the poten-

tial of LLMs. Below, we outline concerns that need to be considered

and addressed in this research area:

• Bias and discrimination: LLMs are biased towards their

training data, which can lead them to favor certain textual

units when creating summaries.

• Transparency and accountability: LLMs are black boxes,

with an opaque decision-making process, making it difficult

to discern how or why specific textual units are chosen for

summarization. This lack of transparency can create ethical

issues, especially in scenarios where clear explanations for

decisions are needed.

• Environmental impact: The training and operation of LLMs

require substantial computational resources, which con-

tribute to increased energy consumption and may have a

negative environmental impact.

While LLMs can produce high-quality summaries, their use must

be approached with careful consideration of potential ethical impli-

cations.
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